INDUSTRAIAL ALUMINIUM PROFILES

MIEN HUA PRECISION MECHANICAL CO., LTD.

MIEN HUA PRECISION MECHANICAL CO., LTD

Add: Km 1954, 1A High Way, Tan Khanh Ward, Tan An City, Long An Province Tel: (84-2723) 512 870-512 871

Fax: (84-2723) 512 872

Website: www.mienhua.com - www.rmax.com.vn - www.rmax.vn

ABOUT MIENHUA

Mien Hua is the member of Ynghua Group, where is a 100% Taiwan company, including 4 companies and 5 factories.

YNGHUA VIETNAM CO.,LTD

MIENHUA PRECISION MECHANICAL CO., LTD,

MIANLAN PRECISION MECHANICAL CO., LTD

ASEAN ALUMINUM CO., LTD

We are proud of being one of the leading aluminium profile Manufacturer in VietNam in terms of capacity and specializing in aluminum extrusion including:

- + Industrial profile
- + Door & window profile, curtain wall, patrition, rolling doors systems
- + Interior decoration
- + Transportations
- + Furniture profile
- + Finishing: Anodizing,
- + PVDF, Power coating
- + Wooden printing

With total capacity of 5000 tons per month.

The Market is shared by 70% for local market and 30% for exporting.

ALUMINIUM AS A MATERIAL

* STRONG AND LIGHT

2.7 (g/cm3) = 1/3 the weight of steelLow weight means reduced energy consumption in transportationLow weight is an advantage during assembly in buildings and in many other applications.

the weight of stee

* PERFECT FOR FOOD PACKAGING

Aluminium foil is completely impermeable – no taste, aroma or light gets in or out Widely used in food and drink packaging
Efficient conservation of food reduces wastage
Low weight reduces packaging in transportation
Impermeability also reduces cooling needs.

* FIRE-PROO

Aluminium in buildings, construction and transport is fire-proof Will only burn if shaped as very thin film Will melt at 660° C without releasing any gases.

* EASY TO FORM

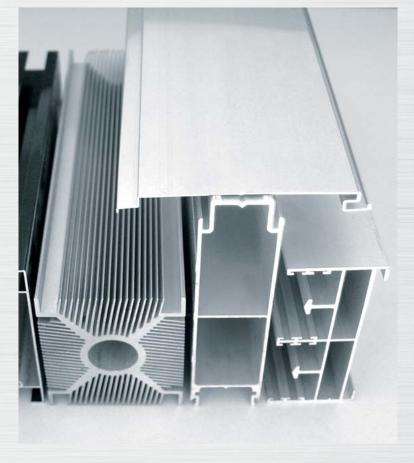
Aluminium is ductile and has a low melting point

Easy to process in cold and hot condition

This allows design flexibility and integration in advanced transport and building industries.

Only 5% of the energy required to produce the primary metal initially is needed in the recycling process

Total loss in the re-melting is less than 3%



About 75% of aluminium ever produced is still in use

* SUPERCONDUCTOR FOR HEAT AND ELECTRICITY

Twice as good a conductor as copper

This makes aluminium the best choice for energy-efficient systems for electrical transmission, such as transfer components

The aluminium process is a unique combination of properties which make it extremely attractive and versatile construction material with universal application.

*Great reflector

Can reflect both heat and light

Combined with its light weight, this makes aluminium ideal for reflectors like light fittings High energy efficiency in the reflectors reduces energy consumption.

*Long life – low maintenance

Aluminium forms a protective oxide coating that makes it highly corrosion resistant This prolongs the life of aluminium in cars and buildings

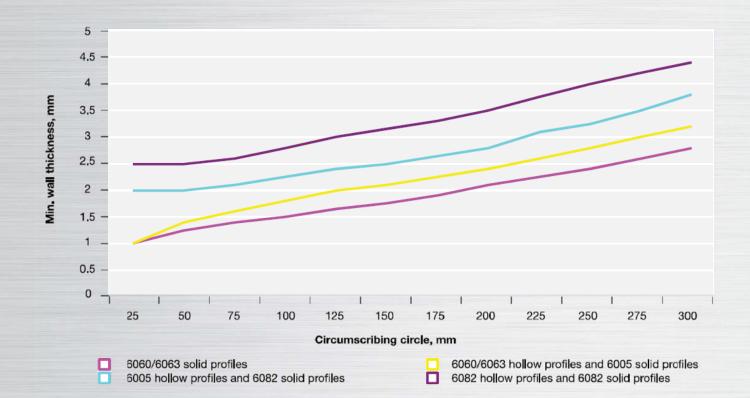
Reduces need for maintenance

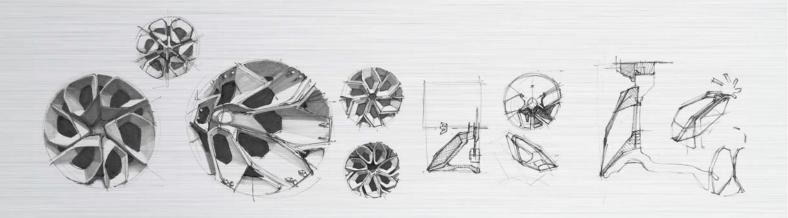
Reduces environmental impacts due to replacements and maintenance.

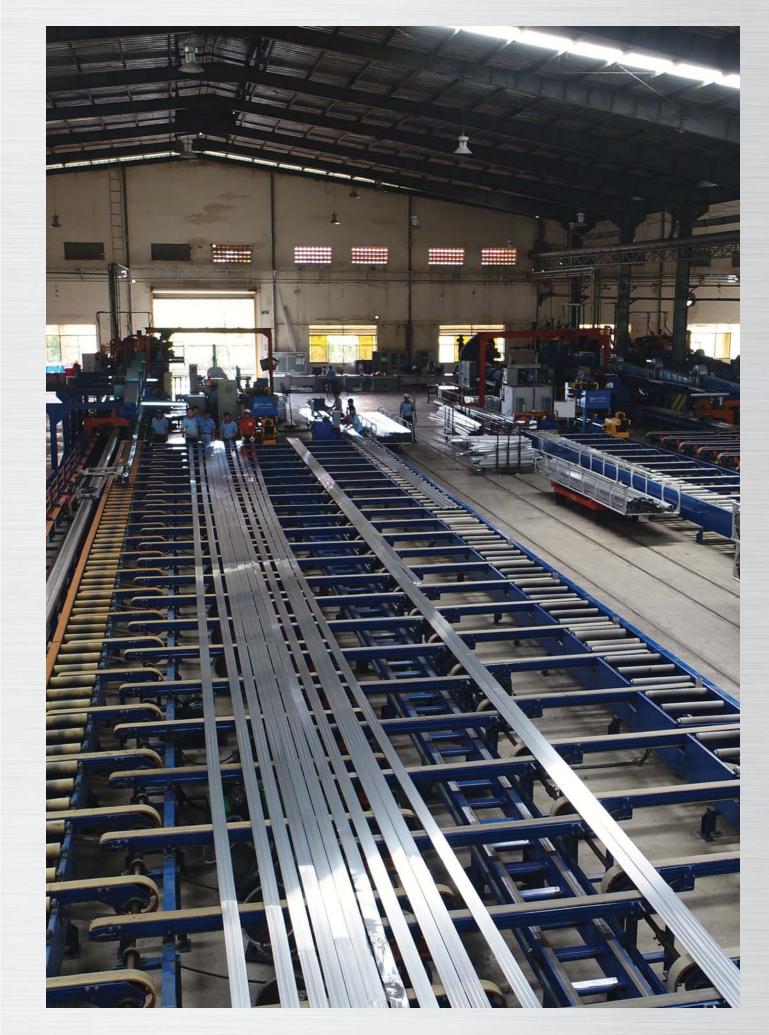
*Easy to recycle

Re-melting of aluminium requires little energy; total loss in the re-melting process is less than three percent Only five percent of the energy required to produce the primary metal initially is needed in the recycling process About 75 percent of all aluminium ever produced is still in use

DESIGN OF ALUMINIUM PROFILES


Aluminum is the material that gives almost unlimited possibility to design different forms of profiles.


To increase the extrudability, funcitionality and productivity of the profiles it is necessary to follow some basic design rules.


WALL THICKNESSES

The decrease of the wall thicknesses cannot be unlimited. It depends on the profile's shape and the circumscribing circle.

Recomended minimum material thickness is shown below:

PRODUCTION

EXTRUSION

With five production facilities, in Long An, Dong Nai, and Ha Nam provinces , MIEN HUA guarantees continuous and uninterrupted delivery to all its customers.

Our production plants are equipped with 40 modem extrusion presses with capacity ranging from 1,500 tones to 5,000 tones for a total monthly capacity of over

40 000 tones, producing a wide range of standard aluminium profiles with more than 10,000 different cross-profiles in the following groups: L-profiles; flat bar profiles; round, rectangular and square tubes; T-profiles; U-profiles. The modern equipment allows us to produce high-tech custom profiles, precisely matching the client's drawings.

All profiles are produced according to the European standard EN 573-3 from the following alloys:

- EN AW I050 (AI 99.5)
- EN AW 6060 (Al Mg Si)
- EN AW 6063 (Al Mg 0.7 Si)
- EN AW 6005 (Al Si Mg)
- EN AW 6082 (Al Si I Mg Mn)

WORKING STANDARDS IN ETEM

EN 573

Aluminium and aluminium alloys. Chemical composition and form of wrought products;

EN 755

Aluminium and aluminium alloys.

Extruded rod/bar. tube and pro.ft/es;

EN 12020

Aluminium and aluminium alloys. Extruded precision profiles in alloys EN AW-6060 and EN AW-6063;

DIN 17611

Anodized products from aluminium and aluminium alloys;

EN 22768

General tolerances. Tolerances for linear and angular dimensions and Geometrical tolerances for features without individual tolerance indications (Applied to fabrication).

AL2011

PRESENTATION:

This alloy is the most often selected for high speed automatic lathes.

- It offers the following advantages:
- a. easy machining with any equipment.
- b. cutting stress lower than most of other alloys.
- c. longer life of cutting tools.
- d. high mechanical properties
- e. possibility to anodize finished parts in several colors.

MAIN APPLICATIONS:

screws, bolts, nuts, threaded bars.

PROPERTIES:

Properties	T3/T6	Т8
Machinability		
Protective Anodizing		
Decorative Anodizing		
Hard Anodizing		
Resistance to atmospheric corrosion		
Resistance to marine corrosion		
MIG-TIG weldability		
At resistance weldability		
Brazing weldability		
Plastic fomability when cold		
Plastic formability when hot		

Legend			Excellent
			Good
			Acceptable
			Not recommended

Chemical Composition	Physical Characteristics	Mechanical Properties						
Si ≤0.40			Temper	Rm Mpa	Rp 0.2 Mpa	A%	HBW	
Fe ≤0.70	Density kg/dm3 2.83			три	Mpa			
Cu 5.00 ÷ 6.00		qeq	T6	310	230	230	110	
Mn		Extruded	16	310	230	230	110	
Mg	Modulus of Elasticity Mpa 70,000		T6*	360	245	245	120	
Cr			10"	300	243	243	120	
Ni			T3	320	270	270	90	
Zn ≤0.3	Coefficient of thermal expansion x10-6/°C 22.9		13	320	270	270	90	
Ti			T3*	370	280	280	115	
Zr	The average County at the state 20°C W/mg/s		15"	370	200	200	113	
Pb 0.20 ÷ 0.40	Thermal Conductivity at 20°C W/mk T3:151, T8:171	Drawn	Т8	370	270	270	115	
Bi 0.20 ÷ 0.60		Δ	18	3/0	2/0	2/0	115	
Al Rem.	Electrical Resistivity at 20°C Ωmm2 / m T3:0.038, T8: 0.043		T8*	400	310	310	125	

AL2007

PRESENTATION:

Among aluminium alloys for high speed automatic lathes, 2007 and 2030 have the highest mechanical characteristics.

This alloy is the most often selected when it is required to have a good combination of machinability and high mechanical properties. It has low corrossion resistance; therefore it is recommended to have a protective anodizing of finished products.

MAIN APPLICATIONS:

screws, bolts, nuts, threaded bars.

PROPERTIES:

Al Rem.

Properties	T3/T4
Machinability	
Protective Anodizing	
Decorative Anodizing	
Hard Anodizing	
Resistance to atmospheric corrosion	
Resistance to marine corrosion	
MIG-TIG weldability	
At resistance weldability	
Brazing weldability	
Plastic fomability when cold	
Plastic formability when hot	

Legend		Excellent
		Good
		Acceptable
		Not recommended

Chemical Composition	Physical Characteristics	Mechanical Properties						
Si ≤0.80			Temper	Rm Mpa	Rp 0.2 Mpa	A%	HBW	
Fe ≤0.80	Density kg/dm3 2.85			Mpa	Mpa			
Cu 3.30 ÷ 4.60		pep	T4	370	250	8	95	
Mn 0.50 ÷ 1.00		Extruded	14	370	230	0	95	
Mg 0.40 ÷ 1.80	Modulus of Elasticity Mpa 71,000		T4*	440	300	12	125	
Cr ≤0.10			14	440	300	12	123	
Ni ≤0.20		wn	T3	370	240	7	95	
Zn ≤0.80	Coefficient of thermal expansion x10-6/°C 23.5		13	370	240	,	93	
Ti ≤0.20		Drawn	T3*	465	410	8	125	
Zr			15"	403	410	٥	123	
Pb 0.80 ÷ 1.00	Thermal Conductivity at 20°C W/mk 140							
Bi ≤0.20								
Sn ≤0.20	Floatrical Posistivity at 20°C Omm2 / m 0.057							

Electrical Resistivity at 20°C Ωmm2/m 0.057

AL2017A

PRESENTATION:

This alloy has high mechanical properties and excellent resistance to fatigue. During machining, it creates quite long chips. Therefore, it is not well suited for automatic lathes. It can be replaced by 2030 which has the same mechanical properties but has better machinability, allowing higher productivity.

MAIN APPLICATIONS:

High structural resistance components for aviation, defence, high resistance components, screws and bolts.

PROPERTIES:

Properties	т	3/T4
Machinability		
Protective Anodizing		
Decorative Anodizing		
Hard Anodizing		
Resistance to atmospheric corrosion		
Resistance to marine corrosion		
MIG-TIG weldability		
At resistance weldability		
Brazing weldability		
Plastic fomability when cold		
Plastic formability when hot		

end			Excellent
			Good
			Acceptable
			Not recommended

Chemical Composition	Physical Characteristics	Mechanical Properties						
Si ≤0.80			Temper	Rm	Rp 0.2	A%	HBW	
Fe ≤0.70	Density kg/dm3 2.79		Temper	Мра	Мра	7170		
Cu 3.50 ÷ 4.50		ded	T4	200	260	0	105	
Mn 0.40 ÷ 1.00		Extruded	T4	390	260	9	105	
Mg 0.40 ÷ 1.00	Modulus of Elasticity Mpa 75,000		T4*	410	260	11	115	
Cr ≤0.10			14"	410	260	- ''	115	
Ni		u,	To	400	250	10	105	
Zn ≤0.5	Coefficient of thermal expansion x10-6/°C 23.6		T3	400	250	10	105	
Ti		Drawn	T2*	470	200	11	125	
Zr			T3*	470	390	11	135	
Pb	Thermal Conductivity at 20°C W/mk 134							
Ri								

Electrical Resistivity at 20°C Ω mm2 / m 0.051

8 09

Sn

Al Rem.

AL2024

PRESENTATION:

This alloy has high mechanical properties and excellent resistance to fatigue. During machining, it creates quite long chips, therefore it is not well suited for automatic lathes.

It can be replaced by 2030 which has the same mechanical properties but has better machinability, allowing higher productivity.

MAIN APPLICATIONS:

High structural resistance components for aviation, defence, high resistance components, screws and bolts.

PROPERTIES:

Al Rem.

Properties	T3,	/T4	
Machinability			
Protective Anodizing			
Decorative Anodizing			
Hard Anodizing			
Resistance to atmospheric corrosion			
Resistance to marine corrosion			
MIG-TIG weldability			
At resistance weldability			
Brazing weldability			
Plastic fomability when cold			
Plastic formability when hot			

Legend		Excellent
		Good
		Acceptable
		Not recommended

Chemical Composition	Physical Characteristics	Mechanical Properties						
Si ≤0.50			Temper	Rm Mpa	Rp 0.2 Mpa	A%	HBW	
Fe ≤0.50	Density kg/dm3 2.79		Temper	ivipa	Mpa	7170	TIDW	
Cu 3.80 ÷ 4.90		ged		440	200		400	
Mn 0.90 ÷ 0.90		Extruded	T4	440	300	8	120	
Mg 1.20 ÷ 1.80	Modulus of Elasticity Mpa 70,000		T.4×	100	200		120	
Cr ≤0.10			T4*	490	380	8	130	
Ni		u _N		405	200		100	
Zn ≤0.80	Coefficient of thermal expansion x10-6/°C 23.1		Т3	425	290	9	120	
Ti ≤0.1.5		Drawn	Tax		400	10	1.10	
Zr			T3*	520	420	10	140	
Pb	Thermal Conductivity at 20°C W/mk 120							
Bi								
Sn	Floctrical Posistivity at 20°C Omm2 / m 0.057							

Electrical Resistivity at 20°C $\,\Omega$ mm2 / m 0.057

AL6061

PRESENTATION:

This alloy presents medium mechanical properties and an excellent resistance to corrsion and good weldability properties.

MAIN APPLICATIONS:

Stressed structures such as towers and shafts, carpentry, components for railroad, nautical, defence, aviation means of transport. For cars, extrusions for seat guide, bumpers, ABS parts and sub frame.

PROPERTIES:

Properties	Т6		
Machinability			
Protective Anodizing			
Decorative Anodizing			
Hard Anodizing			
Resistance to atmospheric corrosion			
Resistance to marine corrosion			
MIG-TIG weldability			
At resistance weldability			
Brazing weldability			
Plastic fomability when cold			
Plastic formability when hot			

end		Excellent
		Good
		Acceptable
		Not recommended

Chemical Composition	Physical Characteristics	Mechanical Properties						
Si 0.40 ÷ 0.80			Temper	Rm Mpa	Rp 0.2 Mpa	A%	HBW	
Fe ≤0.70	Density kg/dm3 2.71			pu	mpa			
Cu 0.15 ÷ 0.40		ded	T4	260	240	8	95	
Mn ≤0.15		Extruded	14	200	240	0	93	
Mg 0.80 ÷ 1.20	Modulus of Elasticity Mpa 69,000		T4*	360	320	11	110	
Cr 0.04 ÷ 0.35			14"	300	320	11	110	
Ni			T3	290	240	10	95	
Zn ≤0.25	Coefficient of thermal expansion x10-6/°C 23.5	Drawn	15	290	240	10	95	
Ti ≤0.15		Dra	T3*	370	330	10	110	
Zr			13"	3/0	530	10	110	
Pb	Thermal Conductivity at 20°C W/mk 173							
Bi								

Electrical Resistivity at 20°C Ωmm2 / m 0.037

11.

Sn

Al Rem.

AL6082

PRESENTATION:

This alloy has medium mechanical properties, but high resistance to corrosion and excellent weldability.

MAIN APPLICATIONS:

Highly stressed structural parts for ground and nautical means of transport, anti-impact lateral bars, door frame, space frame and sub frame for cars, hydraulic systems, stairs and scaffoldings, platforms, screws and rivets, particulars for unclear plants, food industry.

PROPERTIES:

Properties	T6	
Machinability		
Protective Anodizing		
Decorative Anodizing		
Hard Anodizing		
Resistance to atmospheric corrosion		
Resistance to marine corrosion		
MIG-TIG weldability		
At resistance weldability		
Brazing weldability		
Plastic fomability when cold		
Plastic formability when hot		

Legend			Excellent
			Good
			Acceptable
			Not recommended

Chemical Composition	Physical Characteristics		Mechan	ical Prop	erties			
Si ≤0.40 ÷ 0.80			Temper	Rm	Rp 0.2	A%	HBW	
Fe ≤0.70	Density kg/dm3 2.72		ichipei	Мра	Мра	7170	TIDVV	
Cu 0.15 ÷ 0.40		ded		260	240			
Mn ≤0.15		Extruded	T6	260	240	10	90	
Mg 0.80 ÷ 1.20	Modulus of Elasticity Mpa 69,000			Tex	250	222	10	110
Cr 0.04 ÷ 0.14			T6*	350	320	10	110	
Ni			T6	290	240	10	90	
Zn ≤0.25	Coefficient of thermal expansion x10-6/°C 23.4		TCX	250	205	12	0.5	
Ti ≤0.15			T6*	350	295	12	95	
Zr			T8	345	315	4	95	
Pb 0.20 ÷ 0.40	Thermal Conductivity at 20°C W/mk 172	Drawn	T8*	375	355	10	105	
Bi 0.40 ÷ 0.80		Δ						
Al Rem.	Floatrian Designicity at 20% Oner 2 / rs 0.020		T9	360	330	4	95	
	Electrical Resistivity at 20°C Ωmm2 / m 0.039		T9*	385	370	7	110	

AL7075

PRESENTATION:

This alloy has extremely high mechanical properties and high resistance to fatigue. Moreover it has good resistance to corrosion and attitude to hard, protective and decorative anodizing.

MAIN APPLICATIONS:

High resistance structural parts for mechanical industry, aviation, military and automotive.

PROPERTIES:

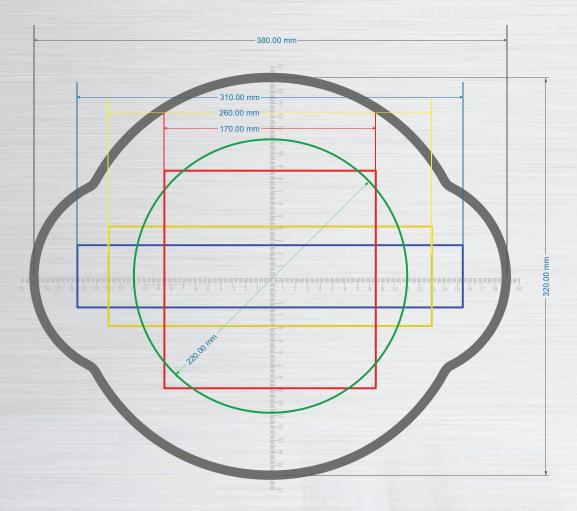
Properties	T6			
Machinability				
Protective Anodizing				
Decorative Anodizing				
Hard Anodizing				
Resistance to atmospheric corrosion				
Resistance to marine corrosion				
MIG-TIG weldability				
At resistance weldability				
Brazing weldability				
Plastic fomability when cold				
Plastic formability when hot				

Legend			Excellent
			Good
			Acceptable
			Not recommended

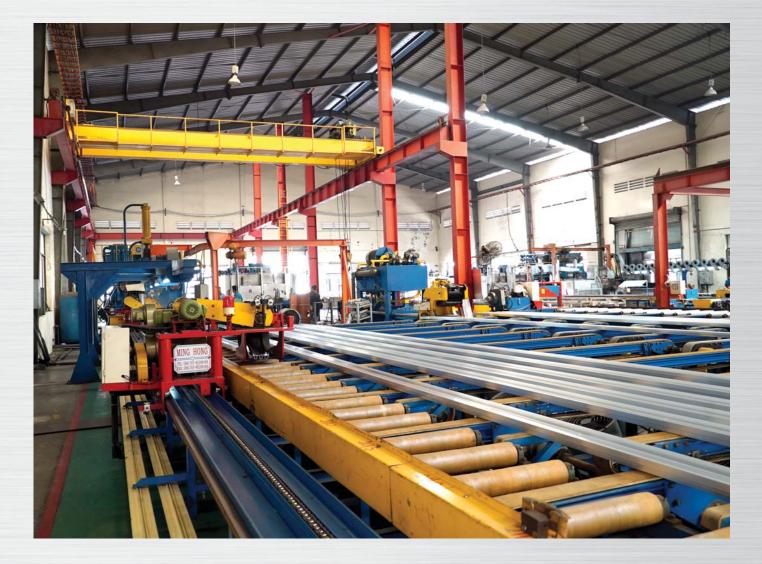
Chemical Composition	Physical Characteristics	Mechanical Properties						
Si 0.40 ÷ 0.80			Temper	Rm	Rp 0.2	A%	HBW	
Fe ≤0.70	Density kg/dm3 2.80		Temper	Мра	Мра	7770	TIDVV	
Cu 0.15 ÷ 0.40		ded		560	500	_	450	
Mn ≤0.15		Extruded	T4	560	500	7	150	
Mg 0.80 ÷ 1.20	Modulus of Elasticity Mpa 72,000		T4×	500	F10	7	160	
Cr 0.04 ÷ 0.35			T4*	580	510	7	160	
Ni			To	F40	400	7	150	
Zn ≤0.25	Coefficient of thermal expansion x10-6/°C 23.5	£	Т3	540	480	/	150	
Ti ≤0.15		Drawn	T2*	500	520	7	160	
Zr			T3*	590	530	7	160	
Pb	Thermal Conductivity at 20℃ W/mk 130							
Ri								

Electrical Resistivity at 20°C Ω mm2 / m 0.025

Sn


Al Rem.

MAXIMUM DIMENSIONS OF EXTRUDED PROFILES


Maximum dimensions of profiles vary depending on the aluminium alloy, wall thickness, complexity of profile and tolerances.

Minimum profile wall thickness depends on circumscribing circle diameter and alloy. As lower limit is accepted 0,85 mm Maximum profile length is 14 m

Profile weight:0,085 + 13,5 kg/m

Open profiles	Hollow profiles	Solid profiles
Overall hatched zone	Square tubes	Orthogonal bars
	max 150 xl 50 mm	max 70 x 70
	Rectangular tubes	Round bars
	max 300 x 50 mm	max diameter 100 mm
	Round tubes	
	max diameter 200 mm	

QUALITY AND CERTIFICATES

Our ambition is to deliver right products right on time and right on the spot to reach the ultimate satisfaction of the clients.

With the introduction of the quality management system we set the following strategic objectives, the achievement of which is with crucial meaning for the organization:

- To meet the requirements of our customers
- To preserve and expand the market share of our company
- · To work with a competent and loyal staff
- To reduce nonconformities and losses due to poor quality
- To maintain mutually beneficial relationships with our partners and suppliers
- To develop and to use the quality management system of as a tool for achieving our objectives

ISO 9001:2008

QCVN 16: 2014/BXD Quality Management System

CNS AND JIS National Technical Regulations on Products, Goods of Building Materials

AAMA 2603-2604-2605 Chinese and Japanese Aluminum Alloys

JIS H8601-H8602 American Quality sign for paint, lacquer and powder coatings on aluminium for architectural application

Combined Coatings of Anodic Oxide And Organic Coatings on Aluminum and Aluminum Alloy

15

